Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Biotechnol ; 32(14): 2069-2077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860732

RESUMO

Clostridium perfringens is one of the major foodborne pathogens in humans and animals. With the prevalence of antibiotic-resistant C. perfringens strains, bacteriophages and their endolysins have received considerable attention as promising alternatives to antibiotics. In this study, C. perfringens phage CPD2 was isolated from retail chicken samples. CPD2 belongs to the Podoviridae family and exhibits remarkable thermostability. While CPD2 has narrow host specificity, its endolysin LysCPD2 showed a broader lytic range, killing not only C. perfringens strains but other Gram-positive bacteria, such as B. cereus and B. subtilis. In addition, due to its exceptional thermal stability, LysCPD2 showed significant antibacterial ability against germinating C. perfringens spores during the heat activation process (75 °C for 20 min). Taken together, these results indicate that both thermostable phage CPD2 and its endolysin LysCPD2 can be used as efficient antimicrobial agents to control C. perfringens during thermal processing of foods.

2.
Front Microbiol ; 14: 1179934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520347

RESUMO

Detecting and identifying the origins of foodborne pathogen outbreaks is a challenging. The Next-Generation Sequencing (NGS) panel method offers a potential solution by enabling efficient screening and identification of various bacteria in one reaction. In this study, new NGS panel primer sets that target 18 specific virulence factor genes from six target pathogens (Bacillus cereus, Yersinia enterocolitica, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) were developed and optimized. The primer sets were validated for specificity and selectivity through singleplex PCR, confirming the expected amplicon size. Crosscheck and multiplex PCR showed no interference in the primer set or pathogenic DNA mixture. The NGS panel analysis of spiked water samples detected all 18 target genes in a single reaction, with pathogen concentrations ranging from 108 to 105 colony-forming units (CFUs) per target pathogen. Notably, the total sequence read counts from the virulence factor genes showed a positive association with the CFUs per target pathogen. However, the method exhibited relatively low sensitivity and occasional false positive results at low pathogen concentrations of 105 CFUs. To validate the detection and identification results, two sets of quantitative real-time PCR (qPCR) analyses were independently performed on the same spiked water samples, yielding almost the same efficiency and specificity compared to the NGS panel analysis. Comparative statistical analysis and Spearman correlation analysis further supported the similarity of the results by showing a negative association between the NGS panel sequence read counts and qPCR cycle threshold (Ct) values. To enhance NGS panel analysis for better detection, optimization of primer sets and real-time NGS sequencing technology are essential. Nonetheless, this study provides valuable insights into applying NGS panel analysis for multiple foodborne pathogen detection, emphasizing its potential in ensuring food safety.

3.
J Microbiol Biotechnol ; 33(1): 83-95, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36457187

RESUMO

These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.


Assuntos
Alimentos Fermentados , Listeria monocytogenes , Microbiologia de Alimentos , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Multiplex/métodos , Salmonella typhimurium/genética , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Listeria monocytogenes/genética
4.
Viruses ; 11(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683584

RESUMO

Clostridium perfringens is a Gram-positive, anaerobic, and spore forming bacterium that is widely distributed in the environment and one of the most common causes of foodborne illnesses. Bacteriophages are regarded as one of the most promising alternatives to antibiotics in controlling antibiotic-resistant pathogenic bacteria. Here we isolated a virulent C. perfringens phage, CPS1, and analysis of its whole genome and morphology revealed a small genome (19 kbps) and a short noncontractile tail, suggesting that CPS1 can be classified as a member of Picovirinae, a subfamily of Podoviridae. To determine the host receptor of CPS1, the EZ-Tn5 random transposon mutant library of C. perfringens ATCC 13124 was constructed and screened for resistance to CPS1 infection. Analysis of the CPS1-resistant mutants revealed that the CPF_0486 was disrupted by Tn5. The CPF_0486 was annotated as galE, a gene encoding UDP-glucose 4-epimerase (GalE). However, biochemical analyses demonstrated that the encoded protein possessed dual activities of GalE and UDP-N-acetylglucosamine 4-epimerase (Gne). We found that the CPF_0486::Tn5 mutant produced a reduced amount of capsular polysaccharides (CPS) compared with the wild type. We also discovered that glucosamine and galactosamine could competitively inhibit host adsorption of CPS1. These results suggest that CPS acts as a receptor for this phage.


Assuntos
Bacteriófagos , Clostridium perfringens/virologia , Podoviridae , Polissacarídeos Bacterianos/genética , Receptores Virais/genética , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Carboidratos Epimerases/genética , Clostridium perfringens/genética , Genes Bacterianos , Genoma Viral , Filogenia , Podoviridae/classificação , Podoviridae/genética , Podoviridae/isolamento & purificação , Podoviridae/ultraestrutura , UDPglucose 4-Epimerase/genética
5.
ACS Appl Mater Interfaces ; 11(6): 6550-6560, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30640431

RESUMO

Anti-biofouling has been improved by passive or active ways. Passive antifouling strategies aim to prevent the initial adsorption of foulants, while active strategies aim to eliminate proliferative fouling by destruction of the chemical structure and inactivation of the cells. However, neither passive antifouling strategies nor active antifouling strategies can solely resist biofouling due to their inherent limitations. Herein, we successfully developed multimodal antibacterial surfaces for waterborne and airborne bacteria with the benefit of a combination of antiadhesion (passive) and bactericidal (active) properties of the surfaces. We elaborated multifunctionalizable porous amine-reactive (PAR) polymer films from poly(pentafluorophenyl acrylate) (PPFPA). Pentafluorophenyl ester groups in the PAR films facilitate creation of multiple functionalities through a simple postmodification under mild condition, based on their high reactivity toward various primary amines. We introduced amine-containing poly(dimethylsiloxane) (amine-PDMS) and dopamine into the PAR films, resulting in infusion of antifouling silicone oil lubricants and formation of bactericidal silver nanoparticles (AgNPs), respectively. As a result, the PAR film-based lubricant-infused AgNPs-incorporated surfaces demonstrate outstanding antibacterial effects toward both waterborne and airborne Escherichia coli, suggesting a new door for development of an effective multimodal anti-biofouling surface.

6.
Viruses ; 10(5)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751651

RESUMO

Clostridium perfringens is one of the most common causes of food-borne illness. The increasing prevalence of multidrug-resistant bacteria requires the development of alternatives to typical antimicrobial treatments. Here, we isolated and characterized a C. perfringens-specific virulent bacteriophage CPS2 from chicken feces. The CPS2 phage contains a 17,961 bp double-stranded DNA genome with 25 putative ORFs, and belongs to the Picovirinae, subfamily of Podoviridae. Bioinformatic analysis of the CPS2 genome revealed a putative endolysin, LysCPS2, which is homologous to the endolysin of Clostridium phage phiZP2 and phiCP7R. The enzyme showed strong lytic activity against C. perfringens with optimum conditions at pH 7.5⁻10, 25⁻65 °C, and over a broad range of NaCl concentrations. Interestingly, LysCPS2 was found to be highly thermostable, with up to 30% of its lytic activity remaining after 10 min of incubation at 95 °C. The cell wall binding domain in the C-terminal region of LysCPS2 showed a binding spectrum specific to C. perfringens strains. This is the first report to characterize highly thermostable endolysin isolated from virulent C. perfringens bacteriophage. The enzyme can be used as an alternative biocontrol and detection agent against C. perfringens.


Assuntos
Bacteriófagos/enzimologia , Bacteriófagos/genética , Clostridium perfringens/virologia , Endopeptidases/metabolismo , Animais , Bacteriólise , Parede Celular , Galinhas , Endopeptidases/genética , Estabilidade Enzimática , Fezes/virologia , Genoma Viral , Concentração de Íons de Hidrogênio , Cloreto de Sódio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...